
A Self-Adapting System for Linear Solver
Selection

Victor Eijkhout (University of Texas)
joint work with

Erika Fuentes (University of Tennessee)
Naren Ramakrishnan and Pilsung Kang (Virginia Tech)

Sanjukta Bhowmick and David Keyes
(Columbia University, New York)

Yoav Freund (UCSD)

Support: NSF

1 iWAPT2006

Introduction to Self-Adaptive Systems

Adaptive algorithm choice

Abstract description of adaptive systems
The NMD library
The AnaMod library
The SysPro library
The ModBaR library

The Salsa System

Machine Learning / Statistical analysis
Bayesian decision making
Test of Bayesian classification
Reinforcement learning
Boosting

Conclusions and future work

2 iWAPT2006

Self-Adapting Numerical Software; problem statement

On several levels of a scientific problem-solving environment,
decision are beyond the user’s province.

Kernel performance is not portable or persistent

Scheduling of parallel jobs is extremely dynamic

Solving scientific problems takes numerical knowledge outside
the application field

3 iWAPT2006

Proposed solution

Adaptive software: inspect user data and computational
platform, find best algorithm

Heuristic investigation: most questions can not be answered
exactly; we settle for good enough

Self-adapting software: remember results of production runs,
learn over time

4 iWAPT2006

Three levels of adaptivity

Kernel level: Atlas and such;
independent of user data, can
be done in one-time installation

Network level: Grads and such;
modest interaction with user
data, but no major influence

Algorithm level: analysis
dynamically, completely based
on user data

5 iWAPT2006

Component-based framework

6 iWAPT2006

Adaptive algorithm choice

7 iWAPT2006

Hand-coded decisions

8 iWAPT2006

Use of analysis modules

9 iWAPT2006

Self-adaptive system

10 iWAPT2006

Abstract description of adaptive systems

11 iWAPT2006

Numerical problems

A: the set of numerical problems in a class

Dependent on the application area
linear systems:

struct Problem_ {
LinearOperator A;
Vector RHS,KnownSolution,InitialGuess;
double desired_accuracy;

};
typedef struct Problem_* Problem;

12 iWAPT2006

Results

R = S× T: results, the space of solutions plus
performance measurements

struct Result_ {
Vector ComputedSolution;
PerformanceMeasurement performance;

}
struct PerformanceMeasurement_ {

int success;
double Tsetup,Tsolve;
double *ConvergenceHistory;
double BackwardError,ForwardError;

}

13 iWAPT2006

Solution methods

M = {A 7→ R}: the space of methods (potentially) solving the
class of numerical problems

Solver(Problem problem,Result *solution);

In the Salsa system, the solvers are the KSP objects of the Petsc
library.

14 iWAPT2006

Method selection

T (A,M): time taken by method M on problem A

Function Π : A 7→M

Π(A) = M ≡ ∀M′∈M : T (A,M) ≤ T (A,M ′)

Often enough:

Π′(A) = M ≡ M is such that T (A,M) <∞

Defining Π in terms of A impractical: need problem features

15 iWAPT2006

Features, metadata

F: the space of features of the numerical problems

Features (Numerical Metadata) is divided in categories and
elements.

Example categories: structural, normlike, spectral

Often a single computational function for one category.

16 iWAPT2006

Feature classes

structure Structural symmetry, bandwidth, sparsity, skyline

iprs more structural properties

simple various norms, including norm of
symmetric/antisymmetric part

variance diagonal average and variance

normality various measure of departure from normality

spectrum ellipse around FOV, condition, max/min singular
values

⇒ 75 features in all

17 iWAPT2006

The NMD library

18 iWAPT2006

Metadata API

In Salsa: NMD library

NMDCreateObject(NMD_metadata *obj);
NMDCreateCategory(NMD_metadata,char *cat);
NMDCreateComponent

(NMD_metadata,char *cat,char *cmp,NMDDataType t);
NMDSetValue(NMD_metadata,char *cat,char *cmp,void *val);
NMDGetValue(NMD_metadata,char *cat,char *cmp,

NMDDataType *t,void *val,int *success);

19 iWAPT2006

NMD capabilities

Storage and retrieval

Manipulation of whole categories

Conversion to XML, display with XSL

20 iWAPT2006

The AnaMod library

21 iWAPT2006

Feature extraction

Φ : A 7→ F: a function that extracts features of numerical
problems

ComputeQuantity(Problem problem,

char *cat, char *cmp,ReturnValue *result,TruthValue *success);

Modular design:

DeclareModule(char *cat,char *cmp,ReturnType type,

void(*module)(Problem,char*,char*,ReturnValue*,TruthValue*));

22 iWAPT2006

Method selection, 2nd try

Π: F 7→M: the function that picks the best solution
method

Π(x̄) = M if Φ(A) = x̄ and M s.t. ∀M′∈M : T (A,M) ≤ T (A,M ′).

(what if Φ(A1) = Φ(A2)?)
Method picking:

Π ◦ Φ: A 7→M

Intelligent Solver:
Q = λ(A)Π(Φ(A))(A)

Complication: methods are actually compound objects

23 iWAPT2006

The SysPro library

24 iWAPT2006

Preprocessors

P = {A 7→ A}: the set of all mappings from problems into
problems

Example: scale or permute a linear system

K = {A 7→ R}: the set of all solvers

Example: iterative and direct methods

m ∈M : m = k ◦ pn ◦ · · · ◦ p1, k ∈ K, pi ∈ Pi

25 iWAPT2006

Preprocessor classes

m ∈M : m = k ◦ pn ◦ · · · ◦ p1, k ∈ K, pi ∈ Pi

Each preprocessor belongs to a class:

P = P1 ∪ · · ·Pn, pi ∈ Pi

For instance: left / right / symmetric scaling.

26 iWAPT2006

Preprocessor implementation

P = {A 7→ A}

SystemPreprocessor(char *type,char *choice,
Problem in,Problem *out);

Dynamic discovery:

DeclarePreprocessor(char *type,char *choice,
void(*preprocessor)(Problem,Problem*),
char *required_features,int nreq);

27 iWAPT2006

Method selection, 3rd try

Πi : F 7→ Pi : the selector function for preprocessor i

Πk : F 7→ K: the method selector

Intelligent preprocessor application:

Qi = λ(A)Πi (Φ(A))(A)

⇒ Qi ∈ P.

28 iWAPT2006

The ModBaR library

29 iWAPT2006

Method suitability

Suitability functions:

S = {F→ [0, 1]}: the space of suitability measurements of
feature vectors

“Conjugate gradient method: only for symmetric positive definite”
(semantic specification of library routines)

B : M→ S: the method suitability function

then
Π(f) = arg max

m
B(m)(f).

30 iWAPT2006

Classifier construction

D : F×M→ T: the database of features and performance
results of solved problems

Mark the best method among those tested:

D′ : F×M→ {0, 1} ⇔ D′(f ,m) = 1 ≡ m = arg min
m : (m,f)∈D

D(f ,m)

Describe problems solved best by each method:

B′ : M→ P(F) defined by f ∈ B′(m)⇔ D′(f ,m) = 1

Classifier construction
C : P(F)→ S

Then B = C ◦ B′.

31 iWAPT2006

Implementation of classifier construction

Requires functional language; implementation in C possible

32 iWAPT2006

Declare suitability function

FeatureSet symmetry;
NewFeatureSet(&symmetry);
AddToFeatureSet
(symmetry,"simple","symmetry-snorm",PETSC_NULL);

AddToFeatureSet
(symmetry,"simple","symmetry-anorm",PETSC_NULL);

PreprocessorSetSuitabilityFunction
(cur,(void*)symmetry,&onlyforsymmetricproblem);

33 iWAPT2006

Use suitability function

void onlyforsymmetricproblem
(NumericalProblem p,FeatureSet s,SuitabilityValue *val)

{
NewFeatureValues(&values);
InstantiateFeatureSet(p,s,values);
GetFeatureValue(values,0,&sn,&f1);
GetFeatureValue(values,1,&an,&f2);
if (f1 && f2 && an.r>1.e-12*sn.r) {
val = / problem too unsymmetric */

}
}

34 iWAPT2006

The Salsa System

35 iWAPT2006

Capabilities of Salsa

Extraction of features

Storage of features

Testbed for iterative linear system solvers (direct, nonlinear)

Statistical analysis

Automatic heuristic building and application

Application monitor, dynamic testing, heuristic tuning

. . . under development. . .

36 iWAPT2006

Solver capabilities

Using Petsc:

Iterative solvers and preconditioners

Pre-processing of the system: scaling, distribution,
approximation, Schur complement (not yet implemented)

37 iWAPT2006

Machine Learning / Statistical analysis

38 iWAPT2006

Statistical approach

Method choice can be approached as a classification problem

Class ≡ Method
Classifier ≡ Way of picking method

Fuentes: Bayesian decision theory

Ramakrishnan and Kang: Reinforcement Learning

Bhowmick/Freund/Keyes: Boosting, Decision trees

Zhang: Support Vector Machines (not in Salsa)

39 iWAPT2006

Bayesian decision making

40 iWAPT2006

Bayesian decision theory

Picking a method becomes a classification problem:

Given problem features x̄ , for which method ωi is the
suitability P(ωi |x̄) maximized.

41 iWAPT2006

Bayesian decision theory’

Take large set of test problems x̄ , and test them with all
methods

Assign them to the class of the fastest method

⇒ Method ≡ Class ≡ set of problems on which this method
is the fastest

Construct the probability density functions (see below)

Method choice: for a problem with features x̄ , take class i
that maximizes P(ωi |x̄)

42 iWAPT2006

Bayesian decision theory

Bayes’ theorem:

P(A|B) =
P(B|A)P(B)

P(A)

(from P(A ∧ B) = P(A|B)P(B) = P(B|A)P(A))

Used as:
let x be a feature vector, ωi a class

P(ωi |x̄) =
P(x̄ |ωi)P(x̄)

P(ωi)

‘what is the chance ωi is the best method for problem x̄ ’

43 iWAPT2006

Class-conditional probability

P(ωi |x̄) =
P(x̄ |ωi)P(x̄)

P(ωi)

Most important quantity: ‘class-conditional probability’
P(x |ωi)

Choice of ‘probability density function’

Assumption of Gaussian distribution:

P(x̄ , µ̄,Σ) =
1

(2π)d/2|Σ|1/2
exp

{
−1

2
(x̄ − µ̄)tΣ−1(x̄ − µ̄)

}
.

where mean µ̄ and variance Σ derived from data

44 iWAPT2006

45 iWAPT2006

Gaussian assumption

46 iWAPT2006

Discriminant analysis

The assumption of a Gaussian distribution may not be justified:

47 iWAPT2006

Kernel mixtures

48 iWAPT2006

Kernel mixtures

48 iWAPT2006

Test of Bayesian classification

49 iWAPT2006

Outline of the test

Apply principal component analysis (PCA) to features

Use principal components to classify iterative methods:
bcgs, gmres, tfqmr, direct
maximum over all other options

50 iWAPT2006

Relevant features

2 trace/norminf

7 symm anorm/symm snorm

10 row variability

25 ellipse ay/ax

28 kappa

29 positive fraction

31 sigma min / norm1

33 lambda max mag im/norm1

34 lambda min mag re/ lambda max mag re

39 commutator normF/ normF2

40 ruhe75 bound

41 lee95 bound

51 iWAPT2006

2: trace/norminf,
29: positive fraction of spectrum,
39: commutator norm/ Frobenius norm squared

52 iWAPT2006

25: spectrum aspect ratio
29: positive fraction
34: Re(λmin)/Re(λmax)

53 iWAPT2006

Overall reliability

single gaussian rate: [0.456790 0.081571 0.830189 1.000000],
sum: 2.368550

kernel mixture rate: [0.901235 0.734139 0.443396 1.000000],
sum= 3.078770

54 iWAPT2006

Speed vs reliability

Accuracy figures measure true positives: not always the best
measure.
Converge: 93.92%; No-Converge: 56.17%

Serious danger of picking non-converging method.
Solution: classify on complement of convergence region, instead of
non-convergence

55 iWAPT2006

Order of decisions

Classification of preconditioners easier than of iterators:

56 iWAPT2006

Relative speed and reliability

 0

 0.2

 0.4

 0.6

 0.8

 1

tfqmrbothgmres

'plot.dat'

 0

 0.2

 0.4

 0.6

 0.8

 1

euclidbothboomeramg

'plot.dat'

57 iWAPT2006

Reinforcement learning

58 iWAPT2006

Supervised vs Trial/Error learning

Bayesian learning is supervised: someone knows the right
answer

Reinforcement learning: by trial and error ‘method A is better
than B under conditions C’

Advantages:

potentially accurate results with far less work, also easier to
update dynamically
no database needed: learn through trial-and-error
multi-step analysis: possible to pin-point source of error
(iterator, preconditioner, etc)

59 iWAPT2006

Reinforcement learning

Related to Dynamic Programming

Problem formulated as stochastic shortest path problem
(states, actions, instantaneous and final reward)

Policy is determined through experience: running simulator

60 iWAPT2006

RL for linear solvers

Stages: pick load distribution, scaling, preconditioner,
iterative solver

Reward: negative of setup and solve time

State space is divided in overlapping ‘tiles’

61 iWAPT2006

RL math

.

Bellman optimality

R(i) = max
a∈A(i)

r(i , a) +
∑
j∈S

p(i , a, j)R(j)


Q-factor for state-action pair (i , a):

Q(i , a) =
∑
j∈S

p(i , a, j)[r(i , a, j) + R(j)]

then R(i) = maxa∈A(i) Q(i , a)

Observation: Q(i , a) is the expectation of a random variable

62 iWAPT2006

Q-learning

Now use Robbins-Monro algorithm:

E [X] = lim
n→∞

(1/n)
n∑
i

si = lim
n→∞

X n

then

X n+1 = (1− αn+1)X n + αn+1sn+1, αn = 1/n

Q-learning:

Qn+1(i , a)← (1−αn+1)Qn(i , a)+αn+1

[
r(i , a, j) + max

b∈A(j)
Qn(j , b)

]
Note: no probabilities! This can be run through a simulator.

63 iWAPT2006

Test of Reinforcement Learning

Best vs Recommended:

 0

 1

 2

 3

 4

 5

shift

sk
ew

best ksp 'tmp/cols.dat'

3.002.502.001.601.401.201.000.800.700.600.500.450.400.350.300.250.200.150.100.080.060.040.030.02

100.0070.0050.0040.0030.0020.0015.0012.0010.009.008.007.006.005.505.004.504.003.002.502.001.601.401.201.000.800.700.600.500.450.400.350.300.250.200.150.100.080.060.040.030.02

 0

 0.5

 1

 1.5

 2

 2.5

 3

shift

sk
ew

tmp/cols 'tmp/cols.dat'

32.521.61.41.210.80.70.60.50.450.40.350.30.250.20.150.10.080.060.040.030.02

100705040302015121098765.554.5432.521.61.41.210.80.70.60.50.450.40.350.30.250.20.150.10.080.060.040.030.02

Picks the right method in less than 60% of the cases

however, in 95% is within 5% of optimal time.

Possible spread can over 50×

64 iWAPT2006

Boosting

65 iWAPT2006

Abstract formulation of machine learning

Binary classification rule maps instance space A×M 7→ {0, 1}
(equivalent to earlier A 7→M)
Without definition: weak PAC learning, strong PAC learning,
Boosting turns weak learning algorithm into strong.

66 iWAPT2006

Alternating decision trees

Use as weak learner (MLJava package)

(c)

+0.5

a < 4.5 b > 0

-0.7

Y

+0.2

N

b > 1 a > 2

+0.4

Y

-0.2

N

-0.1

Y

+0.1

N

+0.3

Y

-0.6

N

67 iWAPT2006

Binary classification

Decision: does the method work faster than some reference method
Measurement by ROC curves:

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

Test Values

F
re

qu
en

cy

FN

FP

TN
TP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

train−1.5
test−1.5

68 iWAPT2006

Conclusions and future work

Software system: underway to a modular setup

Bayesian: high reliability;
to explore: combinations of steps

RL: promising;
to explore: more irregular test data, more adaptive algorithm

Boosting: also promising;
to explore: classification of reliability; prediction of
components seperately.

In general: non-model test data, more method choices, put all
the pieces together.

Integration in Petsc. . .

Release of all software (http://icl.cs.utk.edu/salsa)

69 iWAPT2006

http://icl.cs.utk.edu/salsa

	Introduction to Self-Adaptive Systems
	Adaptive algorithm choice
	Abstract description of adaptive systems
	The NMD library
	The AnaMod library
	The SysPro library
	The ModBaR library

	The Salsa System
	Machine Learning / Statistical analysis
	Bayesian decision making
	Test of Bayesian classification
	Reinforcement learning
	Boosting

	Conclusions and future work

