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Self-Adapting Numerical Software; problem statement

On several levels of a scientific problem-solving environment,
decision are beyond the user’s province.

Kernel performance is not portable or persistent

Scheduling of parallel jobs is extremely dynamic

Solving scientific problems takes numerical knowledge outside
the application field
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Proposed solution

Adaptive software: inspect user data and computational
platform, find best algorithm

Heuristic investigation: most questions can not be answered
exactly; we settle for good enough

Self-adapting software: remember results of production runs,
learn over time
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Three levels of adaptivity

Kernel level: Atlas and such;
independent of user data, can
be done in one-time installation

Network level: Grads and such;
modest interaction with user
data, but no major influence

Algorithm level: analysis
dynamically, completely based
on user data
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Component-based framework
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Adaptive algorithm choice
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Hand-coded decisions
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Use of analysis modules
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Self-adaptive system
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Abstract description of adaptive systems
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Numerical problems

A: the set of numerical problems in a class

Dependent on the application area
linear systems:

struct Problem_ {
LinearOperator A;
Vector RHS,KnownSolution,InitialGuess;
double desired_accuracy;

};
typedef struct Problem_* Problem;
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Results

R = S× T: results, the space of solutions plus
performance measurements

struct Result_ {
Vector ComputedSolution;
PerformanceMeasurement performance;

}
struct PerformanceMeasurement_ {

int success;
double Tsetup,Tsolve;
double *ConvergenceHistory;
double BackwardError,ForwardError;

}
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Solution methods

M = {A 7→ R}: the space of methods (potentially) solving the
class of numerical problems

Solver(Problem problem,Result *solution);

In the Salsa system, the solvers are the KSP objects of the Petsc
library.
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Method selection

T (A,M): time taken by method M on problem A

Function Π : A 7→M

Π(A) = M ≡ ∀M′∈M : T (A,M) ≤ T (A,M ′)

Often enough:

Π′(A) = M ≡ M is such that T (A,M) <∞

Defining Π in terms of A impractical: need problem features
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Features, metadata

F: the space of features of the numerical problems

Features (Numerical Metadata) is divided in categories and
elements.

Example categories: structural, normlike, spectral

Often a single computational function for one category.
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Feature classes

structure Structural symmetry, bandwidth, sparsity, skyline

iprs more structural properties

simple various norms, including norm of
symmetric/antisymmetric part

variance diagonal average and variance

normality various measure of departure from normality

spectrum ellipse around FOV, condition, max/min singular
values

⇒ 75 features in all
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The NMD library
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Metadata API

In Salsa: NMD library

NMDCreateObject(NMD_metadata *obj);
NMDCreateCategory(NMD_metadata,char *cat);
NMDCreateComponent

(NMD_metadata,char *cat,char *cmp,NMDDataType t);
NMDSetValue(NMD_metadata,char *cat,char *cmp,void *val);
NMDGetValue(NMD_metadata,char *cat,char *cmp,

NMDDataType *t,void *val,int *success);

19 iWAPT2006



NMD capabilities

Storage and retrieval

Manipulation of whole categories

Conversion to XML, display with XSL
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The AnaMod library
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Feature extraction

Φ : A 7→ F: a function that extracts features of numerical
problems

ComputeQuantity(Problem problem,

char *cat, char *cmp,ReturnValue *result,TruthValue *success);

Modular design:

DeclareModule(char *cat,char *cmp,ReturnType type,

void(*module)(Problem,char*,char*,ReturnValue*,TruthValue*));
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Method selection, 2nd try

Π: F 7→M: the function that picks the best solution
method

Π(x̄) = M if Φ(A) = x̄ and M s.t. ∀M′∈M : T (A,M) ≤ T (A,M ′).

(what if Φ(A1) = Φ(A2)?)
Method picking:

Π ◦ Φ: A 7→M

Intelligent Solver:
Q = λ(A)Π(Φ(A))(A)

Complication: methods are actually compound objects
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The SysPro library
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Preprocessors

P = {A 7→ A}: the set of all mappings from problems into
problems

Example: scale or permute a linear system

K = {A 7→ R}: the set of all solvers

Example: iterative and direct methods

m ∈M : m = k ◦ pn ◦ · · · ◦ p1, k ∈ K, pi ∈ Pi
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Preprocessor classes

m ∈M : m = k ◦ pn ◦ · · · ◦ p1, k ∈ K, pi ∈ Pi

Each preprocessor belongs to a class:

P = P1 ∪ · · ·Pn, pi ∈ Pi

For instance: left / right / symmetric scaling.
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Preprocessor implementation

P = {A 7→ A}

SystemPreprocessor(char *type,char *choice,
Problem in,Problem *out);

Dynamic discovery:

DeclarePreprocessor(char *type,char *choice,
void(*preprocessor)(Problem,Problem*),
char *required_features,int nreq);
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Method selection, 3rd try

Πi : F 7→ Pi : the selector function for preprocessor i

Πk : F 7→ K: the method selector

Intelligent preprocessor application:

Qi = λ(A)Πi (Φ(A))(A)

⇒ Qi ∈ P.
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The ModBaR library
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Method suitability

Suitability functions:

S = {F→ [0, 1]}: the space of suitability measurements of
feature vectors

“Conjugate gradient method: only for symmetric positive definite”
(semantic specification of library routines)

B : M→ S: the method suitability function

then
Π(f ) = arg max

m
B(m)(f ).

30 iWAPT2006



Classifier construction

D : F×M→ T: the database of features and performance
results of solved problems

Mark the best method among those tested:

D′ : F×M→ {0, 1} ⇔ D′(f ,m) = 1 ≡ m = arg min
m : (m,f )∈D

D(f ,m)

Describe problems solved best by each method:

B′ : M→ P(F) defined by f ∈ B′(m)⇔ D′(f ,m) = 1

Classifier construction
C : P(F)→ S

Then B = C ◦ B′.
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Implementation of classifier construction

Requires functional language; implementation in C possible

32 iWAPT2006



Declare suitability function

FeatureSet symmetry;
NewFeatureSet(&symmetry);
AddToFeatureSet
(symmetry,"simple","symmetry-snorm",PETSC_NULL);

AddToFeatureSet
(symmetry,"simple","symmetry-anorm",PETSC_NULL);

PreprocessorSetSuitabilityFunction
(cur,(void*)symmetry,&onlyforsymmetricproblem);
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Use suitability function

void onlyforsymmetricproblem
(NumericalProblem p,FeatureSet s,SuitabilityValue *val)

{
NewFeatureValues(&values);
InstantiateFeatureSet(p,s,values);
GetFeatureValue(values,0,&sn,&f1);
GetFeatureValue(values,1,&an,&f2);
if (f1 && f2 && an.r>1.e-12*sn.r) {
*val = .... /* problem too unsymmetric */

}
}
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The Salsa System
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Capabilities of Salsa

Extraction of features

Storage of features

Testbed for iterative linear system solvers (direct, nonlinear)

Statistical analysis

Automatic heuristic building and application

Application monitor, dynamic testing, heuristic tuning

. . . under development. . .
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Solver capabilities

Using Petsc:

Iterative solvers and preconditioners

Pre-processing of the system: scaling, distribution,
approximation, Schur complement (not yet implemented)
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Machine Learning / Statistical analysis
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Statistical approach

Method choice can be approached as a classification problem

Class ≡ Method
Classifier ≡ Way of picking method

Fuentes: Bayesian decision theory

Ramakrishnan and Kang: Reinforcement Learning

Bhowmick/Freund/Keyes: Boosting, Decision trees

Zhang: Support Vector Machines (not in Salsa)
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Bayesian decision making
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Bayesian decision theory

Picking a method becomes a classification problem:

Given problem features x̄ , for which method ωi is the
suitability P(ωi |x̄) maximized.
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Bayesian decision theory’

Take large set of test problems x̄ , and test them with all
methods

Assign them to the class of the fastest method

⇒ Method ≡ Class ≡ set of problems on which this method
is the fastest

Construct the probability density functions (see below)

Method choice: for a problem with features x̄ , take class i
that maximizes P(ωi |x̄)
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Bayesian decision theory

Bayes’ theorem:

P(A|B) =
P(B|A)P(B)

P(A)

(from P(A ∧ B) = P(A|B)P(B) = P(B|A)P(A))

Used as:
let x be a feature vector, ωi a class

P(ωi |x̄) =
P(x̄ |ωi )P(x̄)

P(ωi )

‘what is the chance ωi is the best method for problem x̄ ’
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Class-conditional probability

P(ωi |x̄) =
P(x̄ |ωi )P(x̄)

P(ωi )

Most important quantity: ‘class-conditional probability’
P(x |ωi )

Choice of ‘probability density function’

Assumption of Gaussian distribution:

P(x̄ , µ̄,Σ) =
1

(2π)d/2|Σ|1/2
exp

{
−1

2
(x̄ − µ̄)tΣ−1(x̄ − µ̄)

}
.

where mean µ̄ and variance Σ derived from data
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Gaussian assumption
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Discriminant analysis

The assumption of a Gaussian distribution may not be justified:
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Kernel mixtures
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Kernel mixtures
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Test of Bayesian classification
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Outline of the test

Apply principal component analysis (PCA) to features

Use principal components to classify iterative methods:
bcgs, gmres, tfqmr, direct
maximum over all other options
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Relevant features

2 trace/norminf

7 symm anorm/symm snorm

10 row variability

25 ellipse ay/ax

28 kappa

29 positive fraction

31 sigma min / norm1

33 lambda max mag im/norm1

34 lambda min mag re/ lambda max mag re

39 commutator normF/ normF2

40 ruhe75 bound

41 lee95 bound
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2: trace/norminf,
29: positive fraction of spectrum,
39: commutator norm/ Frobenius norm squared
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25: spectrum aspect ratio
29: positive fraction
34: Re(λmin)/Re(λmax)
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Overall reliability

single gaussian rate: [0.456790 0.081571 0.830189 1.000000],
sum: 2.368550

kernel mixture rate: [0.901235 0.734139 0.443396 1.000000],
sum= 3.078770
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Speed vs reliability

Accuracy figures measure true positives: not always the best
measure.
Converge: 93.92%; No-Converge: 56.17%

Serious danger of picking non-converging method.
Solution: classify on complement of convergence region, instead of
non-convergence
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Order of decisions

Classification of preconditioners easier than of iterators:
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Relative speed and reliability
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Reinforcement learning
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Supervised vs Trial/Error learning

Bayesian learning is supervised: someone knows the right
answer

Reinforcement learning: by trial and error ‘method A is better
than B under conditions C’

Advantages:

potentially accurate results with far less work, also easier to
update dynamically
no database needed: learn through trial-and-error
multi-step analysis: possible to pin-point source of error
(iterator, preconditioner, etc)

59 iWAPT2006



Reinforcement learning

Related to Dynamic Programming

Problem formulated as stochastic shortest path problem
(states, actions, instantaneous and final reward)

Policy is determined through experience: running simulator
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RL for linear solvers

Stages: pick load distribution, scaling, preconditioner,
iterative solver

Reward: negative of setup and solve time

State space is divided in overlapping ‘tiles’
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RL math

.

Bellman optimality

R(i) = max
a∈A(i)

r(i , a) +
∑
j∈S

p(i , a, j)R(j)


Q-factor for state-action pair (i , a):

Q(i , a) =
∑
j∈S

p(i , a, j)[r(i , a, j) + R(j)]

then R(i) = maxa∈A(i) Q(i , a)

Observation: Q(i , a) is the expectation of a random variable
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Q-learning

Now use Robbins-Monro algorithm:

E [X ] = lim
n→∞

(1/n)
n∑
i

si = lim
n→∞

X n

then

X n+1 = (1− αn+1)X n + αn+1sn+1, αn = 1/n

Q-learning:

Qn+1(i , a)← (1−αn+1)Qn(i , a)+αn+1

[
r(i , a, j) + max

b∈A(j)
Qn(j , b)

]
Note: no probabilities! This can be run through a simulator.
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Test of Reinforcement Learning

Best vs Recommended:
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Picks the right method in less than 60% of the cases

however, in 95% is within 5% of optimal time.

Possible spread can over 50×
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Boosting
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Abstract formulation of machine learning

Binary classification rule maps instance space A×M 7→ {0, 1}
(equivalent to earlier A 7→M)
Without definition: weak PAC learning, strong PAC learning,
Boosting turns weak learning algorithm into strong.
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Alternating decision trees

Use as weak learner (MLJava package)

(c)

+0.5

a < 4.5 b > 0

-0.7

Y

+0.2

N

b > 1 a > 2

+0.4

Y

-0.2

N

-0.1

Y

+0.1

N

+0.3

Y

-0.6

N

67 iWAPT2006



Binary classification

Decision: does the method work faster than some reference method
Measurement by ROC curves:
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Conclusions and future work

Software system: underway to a modular setup

Bayesian: high reliability;
to explore: combinations of steps

RL: promising;
to explore: more irregular test data, more adaptive algorithm

Boosting: also promising;
to explore: classification of reliability; prediction of
components seperately.

In general: non-model test data, more method choices, put all
the pieces together.

Integration in Petsc. . .

Release of all software (http://icl.cs.utk.edu/salsa)
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