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Hitachi MATRIX Series

“Matrix Libraries for Supercomputers”
(Dense/Sparse Linear Equation, Eigenvalue, FFT, and Random Number)

- MATRIX/HAP     for S-810, S-820, and S-3800.
- MATRIX/MPP     for SR2001, SR2201.
- MATRIX/MPP     for SR8000, SR11000.

Vector computer

Cluster of SMPs -likeS-810
1983

（Japan First）

S-820
1988

S-3800
1993

SR2201
1996

SR8000
1998

SR11000
2004

MPP

SR2001
1994

AT will be necessary.
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11 -1 Background and motivation

• Background
–– Various typesVarious types of high performance computers.
– The exploitations of high performance are very 

difficult and require enormous human powerenormous human power.
• Motivation of this research

–– To alleviate the costTo alleviate the cost of hand-coding on high 
performance computers.

–– To propose a new automatic tuning frameworkTo propose a new automatic tuning framework
with performance–specific interface.
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11 -2 Problems with matrix library use

1. A lot of trial-and-error computation.
• Users cannot always control parameters related to 

computing accuracy and computing time.
– How to define convergence criterion?

2. Number of matrix parameters has increased 
enormously.

• HPC platforms are now massively parallelized, or 
hybrid parallelized
– How to define CPU number, memory allocation ?

• Various types of implementations 
– What kind of loop unrolling should I use?
– Which algorithm should I use?
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11 -3 Platform trend (1) 

Multiple layered cache system
CPU

registers

Level-1 cache

Level-2 cache

Level-3 cache

Main memory

More capacity

Higher access
from CPU
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11 -4 Loop unrolling; more hand-coding time  

DO  J = 1,100
DO I = 1,100

C(J) =  C(J) + A(I,J)*B(I)
ENDDO

ENDDO

DO  J = 1,100,2
DO I = 1,100

C(J) = C(J) + A(I,J)*B(I)
C(J+1) = C(J+1) + A(I,J+1)*B(I)

ENDDO
ENDDO

STORE 8B + LOAD 24B
／ 2 FLOP

STORE 16B + LOAD 40B
／ 4 FLOP

Less memory bandwidth requirement

unrolling
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11 -5 Platform trend (2)

Parallel architecture development

SMP

MPP

Cluster of SMPs

M

P P P P

P P P P

M M M M

M

P P P P

M

P P P P

M

P P P P

M

P P P P
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11 -6 Platform trend example

Vector computer

Cluster of SMPs -likeS-810
1983

（Japan First）

S-820
1988

S-3800
1993

SR2201
1996

SR8000
1998

SR11000
2004MPP

SR2001
1994

Supercomputing platform development history example: 
The Hitachi supercomputers

L1 cache
+ pseudo 

vector processing

L1, L2, L3 cache
+ pseudo vector 

processing function

L1 cache L1 cache
+ pseudo 

vector registers
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11 -7 Problems in the Grid generation

User

-Performance requirement :faster
-Output Data Requirement: 
under 10-8 precision orthogonality

Policy

……..
Call 
ClassicalGramSchmidt
(V, N, JMAX)
……..

Best     -Modified Gram-Schmidt
Next       -DGKS Gram-Schmidt
Worst     -Classical Gram-Schmidt

Supercomputer

PC (high-end 1CPU)

Best     -Classical Gram-Schmidt
Next      -Modified Gram-Schmidt
Worst    -DGKS Gram-Schmidt

The best algorithm on a PC may be 
the worst algorithm on a supercomputer.
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11 -8 Purpose of today’s talk

• Describe AT definition
– Parameters and viewpoints

• Overview existing AT researches
– Classification from the viewpoints

• Propose a new framework for AT
– “Numerical Policy”

• Tradeoff between accuracy and computing time
• Tradeoff between resource and computing time

– Number of CPUs and computing time
– Memory allocation and computing time
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22
Automation of the best mapping procedure from 

“computation” to “execution code”, in order to 
exploit the highest performance of the computation.

– “Automatic Tuning” is described in PHiPAC(1997) and 
ATLAS(1998)

– “Optimized Mapping” by T. Yuba

-1 Definition of AT

Computation
Eigenvalue

Algorithm
Householder Program Execution code

CompileDescribe
Output

Run

MappingMapping

Select
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22 -2 Examples

• Determine an internal parameter value under a 
given matrix size N.
– Internal parameter: depth of loop unrolling, or 

block size
• Define determination stage of each parameter

– Stage 1: Installation time
– Stage 2: Before execution time (when making 

execution code)
– Stage 3: Run time
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22 -3 Mathematical form of AT

Def. 1: User Control Parameter (UCP)
A parameter that users want to control by themselves, e.g., matrix size or vector length.
Def. 2: Internal Critical Parameter (ICP)
A parameter that affects values of user objective functions (UOF), but is not controlled 
by users, e.g., depth of loop unrolling or maximum iteration number.
Def. 3: Resource Control Parameter (RCP)
A parameter that describes computation resource, e.g., number of CPUs or memory 
allocation.
Def. 4: User Objective Function (UOF)
A function that has values obtained after computation, and that users want to control, 
e.g., residual error or computation time.

Given UCP and RCP, find ICP to minimize 
UOF = UOF (UCP, ICP, RCP).

Time = Time (N, Num_Iter, Num_CPU)Ex.
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22 -4 Two viewpoints (1)

Hierarchy Examples
Solver Linear solver  Ax = y ,  Eigensolver    Av = μv
Sub Solver Tridiagonalization from A (full matrix) into T 

(tridiagonal matrix)
Reorthogonalization from V (non-orthogonalized 
vectors) into V’ (orthogonalized vectors)

BLAS BLAS1   x = x + y,  α= (x, y)
BLAS2   y = Ax,  y = Ax + Atx
BLAS3   C = AB,  A = A –yxt –xyt

Loop DO  J = 1,100
DO I = 1,100

Y(J) =  Y(J) + A(I,J)*X(I)
ENDDO

ENDDO

Matrix Software Hierarchy Viewpoint
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22 -5 Matrix Software Hierarchy Example
Selection of Eigenvalue Tuning

Computation
Eigenvalue

Algorithm
Householder

Program Execution code
CompileDescribe

Output
Run

1)1) Loop UnrollingLoop Unrolling
(1,1) / (1,2) /…
(2,1) / (2,2) /…
(3,1) / (3,2) /…
(4,1) / (4,2) /…

Tridiagonalization

Bisection

Inverse Iteration

Back-transformation 2) Data Blocking2) Data Blocking

3) Data Distribution3) Data Distribution

dsymv

dsyrk

ddot

Sub solver parts
BLAS

Loop

SelectionSelection
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22 -6 Two Viewpoints (2)

Evaluation

subroutine single_orthogonal(W,V,M) 

do j=1, M-1
s = 0.0d0
do i =1, N
s = s + V(i, j)*w(i)

enddo
if (s .ne. 0.0d0) then

do i=1, N
w(i) = w(i) － s*V(i, j)

enddo
endif

enddo

subroutine single_orthogonal(W,V,M)

do j = 1, M-1
s = 0.0d0
do i = 1, N
s = s + V(i, j)*w(i)

enddo
hr(j) = s

Enddo
do i = 1, N
s = 0.0d0
do j = 1, M-1
s = s + V(i, j)*hr(j)

enddo
w(i) = w(i) － s

enddo

Programming

Compile and Run

Software Development Cycle Viewpoint
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33 -1 Type of AT

– Library
• ATLAS(1998), ILIB(1998)

– Script Language
• PHiPAC(1997), ABCLibScript(2002)

– Framework
• FIBER(2003), SANS(2003)

– Research (2004-) continues….
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33 -2 PHiPAC

• Bilmes, et al.(1997)
• Loop coding techniques

– Portable, High-Performance ANSI C Coding 
methodologies

• Automatic parameter search
– Hiding instruction FPU latency
– Loop unrolling parameter values defined from 

register to higher cache (L0 → L1 → L2 →…)
• Experience; DGEMM (BLAS) code on Sparc, 

SGI Indigo etc.
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33 -3 ATLAS

• Whaley, et al.(1998)
• Automatically Tuned Linear Algebra Software
• All BLAS functions
• Highly tuned for PC, RS/6000SP, Sun, Onyx,…
• Automatically tuned by loop unrolling, cache 

blocking,…, but, empirically coded in some cases
• Wide range of performance sampling at installation
• Now used for wide area scientific computing
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33 -4 ILIB

• Kuroda, et al.(1998)
• Intelligent LIBrary
• Solver function; GMRES(m), Eigensolver 
• Automatic loop unrolling selection for matrix-vector 

multiplications
– The depth varies 1, 2, 3, 4, and 8, for example

• Automatic orthogonalization algorithm selection
– Run-time selection of Algorithms; MGS or CGS

• Automatic Preconditioning algorithm selection
• Experience; SR2201, SR8000

MGS = Modified Gram-Schmidt, CGS = Classical Gram-Schmidt
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33 -5 ABCLibScript

• Katagiri, et al.(2002)
• Automatically Blocking and Communication-

adjustment Library Script
• Script for loop in matrix computations
• Automatic loop unrolling selection for any loop type

– Optimization Model description; polynomial type
– Performance sampling point description; loop indices 

• Automatic source codes generation from the 
described model

• Experience; eigenvalue on SR8000, PC
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33 -6 ABCLibscript Sample

!ABCLib$ install unroll (j) region start
!ABCLib$ varied (j) from 1 to 16
!ABCLib$ fitting polynomial 5 sampled (1-5, 8, 16)
do j = 1, n
do i = 1, n

A(i, j) = A(i, j) * u(j) + V(i, j) * u(i)
enddo

enddo

Automatic source code generations with
Performance samplings

Tuned Library Generated
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33 -7 FIBER

• Katagiri, et al.(2003)
• Framework of Installation, Before Execution-

invocation, and Run-time optimization
• Based on optimization framework;

– Find tuning parameters (ex, unrolling pattern) satisfying the 
given conditions (ex, matrix size)

• Classifies the tuning parameters;
– IOP, Installation Optimization Parameters
– BEOP, Before Execution-invocation Optimization 

Parameters
– ROP, Run-time Optimization Parameters

• Experience; eigenvalue on SR8000



All Rights Reserved Copyright© 2006,Hitachi,Ltd. 28

33 -8 SANS

• Dongarra, et al.(2003)
• Self-Adapting Numerical Software
• Plan-Do-See structured software architecture

– SANS Agent
• Method selector, 

– Simple scripting language
– XML/CCA-based metadata

• History database

– System components
• Manage of and access to the Grid

• Experience; not yet (in 2003)
CCA = Common Component Architecture
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33 -9 Matrix Software Hierarchy (2-4)

Hierarchy Examples
Solver Linear solver  Ax = y ,  Eigensolver    Av = μv
Sub Solver Tridiagonalization from A (full matrix) into T 

(tridiagonal matrix)
Reorthogonalization from V (non-orthogonalized 
vectors) into V’ (orthogonalized vectors)

BLAS BLAS1   x = x + y,  α= (x, y)
BLAS2   y = Ax,  y = Ax + Atx
BLAS3   C = AB,  A = A –yxt –xyt

Loop DO  J = 1,100
DO I = 1,100

Y(J) =  Y(J) + A(I,J)*X(I)
ENDDO

ENDDO
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33 -10 Software Development Cycle (2-5)

Evaluation

subroutine single_orthogonal(W,V,M) 

do j=1, M-1
s = 0.0d0
do i =1, N
s = s + V(i, j)*w(i)

enddo
if (s .ne. 0.0d0) then

do i=1, N
w(i) = w(i) － s*V(i, j)

enddo
endif

enddo

subroutine single_orthogonal(W,V,M)

do j = 1, M-1
s = 0.0d0
do i = 1, N
s = s + V(i, j)*w(i)

enddo
hr(j) = s

Enddo
do i = 1, N
s = 0.0d0
do j = 1, M-1
s = s + V(i, j)*hr(j)

enddo
w(i) = w(i) － s

enddo

Programming

Compile and Run
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33 -11 Trends of AT for Matrix Computations

AT 
(YEAR)

PHiPAC
(1997)

ATLAS
(1998)

ILIB
(1998)

ABCLib
Script(02)

FIBER
(2002)

SANS
(2003)

Type Script Library Library Script FW FW

Programming
(Solver)

ー ー ー ー ー ー

Programming
(Sub solver)

ー ー △ ー △ ー

Programming
(BLAS)

△ ◎ ○ ○ ○
(ABC.)

◎
(ATLAS)

Evaluation
(DB)

ー ー ー ー ー ○
(XML/CCA)

Programming
(Loop)

◎ ○ ○ ◎ ○
(ABC.)

○
（ATLAS）

Compiling ー ー ー ー ○ ー

Run ー ー ○ ー ○ ○

Platform Single 
Proc.

Single 
Proc.

MPPs, C. 
of SMPs

MPPs, C. 
of SMPs

MPPs, C. 
of SMPs

GRID

FW = Framework,  CCA = Common Component Architecture
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33 -12 Trend towards higher level semantics

AT 
(YEAR)

PHiPAC
(1997)

ATLAS
(1998)

ILIB
(1998)

ABCLib
Script(02)

FIBER
(2002)

SANS
(2003)

Type Script Library Library Script FW FW

Programming
(Solver)

ー ー ー ー ー ー

Programming
(Sub solver)

ー ー △ ー △ ー

Programming
(BLAS)

△ ◎ ○ ○ ○
(ABC.)

◎
(ATLAS)

Evaluation
(DB)

ー ー ー ー ー ○
(XML/CCA)

Programming
(Loop)

◎ ○ ○ ◎ ○
(ABC.)

○
（ATLAS）

Compiling ー ー ー ー ○ ー

Run ー ー ○ ー ○ ○

Platform Single 
Proc.

Single 
Proc.

MPPs, C. 
of SMPs

MPPs, C. 
of SMPs

MPPs, C. 
of SMPs

GRID

１） From loop or BLAS level to sub solver level.
Step by step, the automatic tuning semantics is going higher.
This is because higher semantics can make use of better
performance with less information.
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33
AT 
(YEAR)

PHiPAC
(1997)

ATLAS
(1998)

ILIB
(1998)

ABCLib
Script(02)

FIBER
(2002)

SANS
(2003)

Type Script Library Library Script FW FW

Programming
(Solver)

ー ー ー ー ー ー

Programming
(Sub solver)

ー ー △ ー △ ー

Programming
(BLAS)

△ ◎ ○ ○ ○
(ABC.)

◎
(ATLAS)

-13 Trend towards total development cycle

Evaluation
(DB)

ー ー ー ー ー ○
(XML/CCA)

Programming
(Loop)

◎ ○ ○ ◎ ○
(ABC.)

○
（ATLAS）

Compiling ー ー ー ー ○ ー

Run ー ー ○ ー ○ ○

Platform Single 
Proc.

Single 
Proc.

MPPs, C. 
of SMPs

MPPs, C. 
of SMPs

MPPs, C. 
of SMPs

GRID

From programming stage to whole stages of software 
development cycle.

Recent automatic tuning methods, FIBER and SANS, are more
conscious of software development cycle. For example, when
automatic tuning for matrix computation targets sparse
matrices, sparse solver performance is largely depends on the 
data of the matrix. Therefore, the feedback will be an important
information for the later computations.
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33 -14 Trend towards wide range of platforms

AT 
(YEAR)

PHiPAC
(1997)

ATLAS
(1998)

ILIB
(1998)

ABCLib
Script(02)

FIBER
(2002)

SANS
(2003)

Type Script Library Library Script FW FW

Programming
(Solver)

ー ー ー ー ー ー

Programming
(Sub solver)

ー ー △ ー △ ー

Programming
(BLAS)

△ ◎ ○ ○ ○
(ABC.)

◎
(ATLAS)

Evaluation
(DB)

ー ー ー ー ー ○
(XML/CCA)

Programming
(Loop)

◎ ○ ○ ◎ ○
(ABC.)

○
（ATLAS）

Compiling ー ー ー ー ○ ー

Run ー ー ○ ー ○ ○

Platform Single 
Proc.

Single 
Proc.

MPPs, C. 
of SMPs

MPPs, C. 
of SMPs

MPPs, C. 
of SMPs

GRID

From single CPU to wider platform availability including Grid.
PHiPAC and ATLAS target single CPU performance, while ILIB, 

ABCLibScript, and FIBER aim at parallel platforms, like MPPs, 
cluster of SMPs. SANS targets the Grid. Newer research target 
automatic tuning on wider platforms 



All Rights Reserved Copyright© 2006,Hitachi,Ltd. 35

33 -15 Notes of SDC

Evaluation

Programming

Compile and Run

PHiPAC
(1997) ATLAS

(1998)

ILIB
(1998)

ABCLib
Script(2002)

FIBER
(2003)

SANS
(2003)

SDC = Software Development Cycle

More focus on evaluation 
will be necessary.
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44 -1 Problems of the existing methods

• Balance is quite important for matrix libraries, 
especially, of iterative methods.
– Computing time and accuracy
– Computing accuracy and computing resource

• So far, no parameter control of the tradeoff 
between computing time and accuracy.
– Algorithm selection in ILIB, but, no explicit form of 

control the balance.
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44 -2 Definitions of numerical policy

Def. 1: UCP = User Control Parameter
Def. 2: ICP = Internal Critical Parameter
Def. 3: RCP = Resource Control Parameter
Def. 4: UOF = User Objective Function

Given UCP and RCP, find ICP to minimize 
UOF = UOF(UCP, ICP, RCP).

Definition of AT

Definition of Policy
Given UCP and RCP, find ICP to balance UOFs.

UOF1 = UOF1(UCP, ICP, RCP), 
UOF2 = UOF2(UCP, ICP, RCP),….
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44 -3 Examples of numerical policy

1) Minimize computing time (UOF1) allowing 
computational error (UOF2) to be large.

Time = Time(N, Iter, Ncpu)
Residual = Residual(N, Iter)

2) Minimize computing time (UOF1) allowing 
number of CPUs (RCP) to be ≤ 1.
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44 -4 Example of policy problem

AT of Iteration number is Iterative method;

ICP = Iteration number, UOF = Computing time,
RCP = Number of CPUs, UCP = Matrix size, 

UOF = UOF ( UCP, ICP, RCP )

<AT problem>
A user wants to minimize UOF with UCP = 10000, RCP = 4.
Find the best ICP value.

<Policy problem>
A user wants to minimize UOF with UCP = 10000, RCP = 1, or 2, or 4.
Also, the user wants to balance UOF and RCP. 
Find the best ICP value.
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55 -1 Target

1) Target  problem
Standard eigenvalue problem of symmetric sparse matrix A with 
size N that is over 10,000.

Av = ev

e - eigenvalue, v - eigenvector.

2) Target solver; Lanczos method
Main calculation

- Sparse matrix vector multiplications - today’s focus.
- Reorthogonalizations - in another paper.
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55 -2 Sparse matrix multiplications 

Matrix elements are stored in A(NZ) row-wise with nonzero indices LL(NZ) and 
diagonal indices LC(N+1).

1 2 3 4
5 6 7 8 9

10 11 12 13
14 15 16

17 18 19 20
21 22 23

24 25
26 27

28
29 30

31 32
33

1 2 3 4 5 6 7 8 9 10 11 12

A（NZ） 1 2 3 4 5 6 28 29 30 31 32 33

LL（NZ） 1 2 7 11 2 3 9 10 11 11 12 12

LC（N+1）

LC(1) = 1
LC(2) = 5
LC(3) = 10
LC(4) = 14
LC(5) = 17
LC(6) = 21
LC(7) = 24
LC(8) = 26
LC(9) = 28
LC(10) = 29
LC(11) = 31
LC(12) = 33
LC(13) = 34

1
2
3
4
5
6
7
8
9
10
11
12

Nonzero indices 
LL(NZ)

Diagonal indices 
LC(N+1)

A(NZ)

LL(NZ)
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55 -3 SMP implementation

Implementation of sparse matrix vector multiplication: r = Ax

#  Program 1 (Single processing implementation)
REAL*8 A(NZ), LL(NZ), LC(N+1), R(N), X(N)

DO I = 1, N
S = A(LC(I))*X(I)

DO JC = LC(I)+1, LC(I+1)-1
JJ = LL(JC)
S = S + A(JC) * X(JJ)
R(JJ) = R(JJ) + A(JC) * X(I)

ENDDO
R(I) = R(I) + S

ENDDO 
Cannot be SMP-parallelized

1 2 3 4
5 6 7 8 9

10 11 12 13
14 15 16

17 18 19 20
21 22 23

24 25
26 27

28
29 30

31 32
33

1 2 3 4 5 6 7 8 9 10 11 12

A（NZ） 1 2 3 4 5 6 28 29 30 31 32 33

LL（NZ） 1 2 7 11 2 3 9 10 11 11 12 12

LC（N+1）

LC(1) = 1
LC(2) = 5
LC(3) = 10
LC(4) = 14
LC(5) = 17
LC(6) = 21
LC(7) = 24
LC(8) = 26
LC(9) = 28
LC(10) = 29
LC(11) = 31
LC(12) = 33
LC(13) = 34

1
2
3
4
5
6
7
8
9
10
11
12



All Rights Reserved Copyright© 2006,Hitachi,Ltd. 45

55 -4 SMP implementation (2)

REAL*8 A(NZ), LL(NZ), LC(N+1), R(N), X(N), RR(N,16)
DO IP = 1, 16

DO I = (IP-1)*N/16+1, IP*N/16
XX = X(I)
S = A(LC(I)) * XX
DO JC = LC(I)+1, LC(I+1)-1

JJ = LL(JC)
S = S + A(JC) * X(JJ)
RR(JJ, IP) = RR(JJ, IP) + A(JC) * XX

ENDDO
R(I) = R(I) + S

ENDDO
ENDDO

Working space for 16 CPUs (on 
SR11000) in SMP parallelization

DO I = 1, N
S = R(I)
DO IP = 1, 16

S = S + RR(I, IP)
ENDDO
R(I) = S

ENDDO

Later, R is taken 
as the sum of 
RRs.

# Program 2 (parallel processing implementation on SMP)
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55 -5 Numerical policies of sparse eigensolver

Policy 1 
“I want to reduce memory allocation as much as possible, even if it would result in a 
longer computation time.”

Then, RR should be eliminated and one CPU computation should be executed.
Policy 2
“I want to reduce computation time as much as possible, even it would result in a 
larger amount of memory use.”

Then, RR should be 16N and 16CPU computations should be executed.

How should the following cases be determined?

Policy 3
“I want to reduce computation time as much as possible, under the condition of a 
certain amount of memory use.”

Policy 4
“I want to balance between amount of memory use and computation time, and I can 
use 4 CPUs. Which working space is better, 4N or 16N?”
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55 -6 Numerical policy interface of sparse eigensolver

An interface for numerical policy set (RCP, UOF)

Limit (mandatory) line, and the Best (ideal) line

No. of CPU

Time (sec)

ICP = 1

ICP = 2

1000

100

20 100

ICP = 3

ICP = 4

ICP = 5

ICP = 6

ICP = 7

UOF-mandatory line

UOF-ideal line

RCP-mandatory line
RCP-ideal line

Small resource policy

Fastest computing policy

Well-balanced policy
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55 -7 Numerical policy interface example

1 $ POLICY libname = SOLVER-A
2 $ POLICY RCP = CPU, CPU_limit = 100, CPU_best = 20
3 $ POLICY UOF = time, time_limit = 1000sec, time_best = 100 sec
4 $ POLICY selection = min; time/time_best + CPU/CPU_best
5 $ POLICY tune ICP = No_Iter
6          CALL SOLVER-A (N, No_Iter, No_CPU)

Example of script language implementation of numerical policy
Library name processed by assigned policy

No. of CPU is set equal to RCP, where the 
limit is 100 while the best is 20.

Computing time is set to UOF, where 
the limit is 1000 sec while the best is 
100 sec.

Policy description

Target parameter to be tuned



All Rights Reserved Copyright© 2006,Hitachi,Ltd. 49

55 -8 When to define the ICP?

No. of CPU

Time (sec)

1000

100

20 100

ICP = 1

ICP = 2

ICP = 3

ICP = 4

ICP = 5

ICP = 6

ICP = 7

UOF-mandatory line

UOF-ideal line

RCP-mandatory line
RCP-ideal line

Well-balanced policy

When to solve the optimization problem (i.e., select the best ICP)?
Installation: Mainly used ICPs are executed. The results are stored. 
Before-execution: Mandatory and ideal lines are defined. The best ICP 

is selected according to a given policy.



All Rights Reserved Copyright© 2006,Hitachi,Ltd. 50

55 -9 Data and computing platform

Case Name Matrix size (N) Non-zero no. (NZ) Sparsity (NZ/(N*N))

１ bcsstk39.rsa 46,772 1,068,033 0.0488%

２ ct20stif.rsa 52,329 1,375,396 0.0502%

３ Pwtk.rsa 217,918 5,926,171 0.0125%

Name Super technical server Hitachi SR11000

Hardware 1 node (16 CPU), CPU: Power5 1.9 GHz, main memory: 128 GB
L1: 32 KB, L2: 1.875 MB, L3: 288 MB, 

Compiler Hitachi FORTRAN for SR11000
Compile option f90 -64 -Os  -noscope -parallel

(same for 1CPU, 4CPUs, and 16CPUs).
At the execution for 16CPUs, 
%>a.out -F'PRUNST(THREADNUM(16))’

MatrixMarket sparse matrices

Computing platform
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55 -10 Policies and ICP for sparse eigensolver

1) Fastest computing policy
UOF1 = time

2) Small memory policy
UOF2 = memory

3) Well-balanced policy
UOF3 = memory/memory_best + time/time_bset

ICP, working space for vectors RR (in program 2)
ICP = 1, No space for RR
ICP = 2, four-vector space (4N) for RR
ICP = 3, sixteen-vector space (16N) for RR
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55 -11 Model to calculate limit and best lines 

Best line of memory use：

Memory_best = 8*NZ + 8*NV*N

Limit line of memory use is set 3 times greater than best line.

Memory_limit = 3*memory_best

Nonzeros of matrix A

NV eigenvectors
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55 -12 Model to calculate limit and best lines

Best line of time is set under the following assumption. 

5 sparse mat-vec multiplications

25% of peak performance 
of SR11000 (1 CPU)

Time_best = 100* (5*2*NZ+3*2*KMAX*N) / (1900Mflop/s*16) 

16 CPUs

3 reorthogonalizations

Calculation executed on SR11000 (16 CPUs) with 25% of the peak 
performance, and the Lanczos iteration number is 100.



All Rights Reserved Copyright© 2006,Hitachi,Ltd. 54

55 -13 Model to calculate limit and best lines

Limit line of time is set under the following assumption. 

25% of peak performance
of SR11000 (1 CPU)

Time_limit = 200* (5*2*NZ+3*2*KMAX*N) / (1900Mflop/s*1) 

even with 
16 CPUs

Calculation executed on SR11000 (1 CPU, even with 16 CPUs) with 
25% of peak performance, and the Lanczos iteration number is 200.

5 sparse mat-vec multiplications
3 reorthogonalizations

Iteration number
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55 -14 Result for case 1 (bcsstk39.rsa)
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55 -15 Result for case 2 (ct20stif.rsa)
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55 -15 Result for case 2 (ct20stif.rsa)
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55 -16 Result for case 3 (Pwtk.rsa)
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55 -16 Result for case 3 (Pwtk.rsa)
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Iteration number was 271, over than the model. 
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55 -17 Preliminary result for optimized ICP

Numerical policiesCase No. of 
CPUs

Fastest computing Small memory Well-balanced (time/memory)

1 ICP = 1 ICP=1 ICP = 1 (0%/0%)

2 ICP = 2 ICP=1 ICP = 2 (0%/6.1%)

4 ICP = 2 ICP=1 ICP = 2 (0%/6.1%)

8 ICP = 3 ICP=1 ICP = 3 (0%/24.2%)

16 ICP = 3 ICP=1 ICP = 3 (0%/24.2%)

1 ICP = 1 ICP=1 ICP = 1 (0%/0%)

2 ICP = 2 ICP=1 ICP = 1 (0%/24.2%)

4 ICP = 2 ICP=1 ICP = 2 (0%/24.2%)

8 ICP = 3 ICP=1 ICP = 2 (50.0%/6.1%)

16 ICP = 3 ICP=1 ICP = 2 (50.0%/6.1%)

1 NG NG NG

2 ICP = 2 ICP=2 ICP = 2 (0%/0%)

4 ICP = 3 ICP=1 ICP = 2 (1.8%/6.1%)

8 ICP = 3 ICP=1 ICP = 2 (20.0%/6.1%)

16 ICP = 3 ICP=1 ICP = 2 (22.1%/6.1%)

3

2

1
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55 -17 Preliminary result for optimized ICP

Numerical policiesCase No. of 
CPUs

Fastest computing Small memory Well-balanced (time/memory)

1 ICP = 1 ICP=1 ICP = 1 (0%/0%)

2 ICP = 2 ICP=1 ICP = 2 (0%/6.1%)

4 ICP = 2 ICP=1 ICP = 2 (0%/6.1%)

8 ICP = 3 ICP=1 ICP = 3 (0%/24.2%)

16 ICP = 3 ICP=1 ICP = 3 (0%/24.2%)

1 ICP = 1 ICP=1 ICP = 1 (0%/0%)

2 ICP = 2 ICP=1 ICP = 1 (0%/24.2%)

4 ICP = 2 ICP=1 ICP = 2 (0%/24.2%)

8 ICP = 3 ICP=1 ICP = 2 (50.0%/6.1%)

16 ICP = 3 ICP=1 ICP = 2 (50.0%/6.1%)

1 NG NG NG

2 ICP = 2 ICP=2 ICP = 2 (0%/0%)

4 ICP = 3 ICP=1 ICP = 2 (1.8%/6.1%)

8 ICP = 3 ICP=1 ICP = 2 (20.0%/6.1%)

16 ICP = 3 ICP=1 ICP = 2 (22.1%/6.1%)

3

2

1

In well-balanced policy; 
- Computing time: 50% longer than fastest computing policy.
- Amount of memory: 6.1% larger than small memory policy. 
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55 -17 Preliminary result for optimized ICP

Numerical policiesCase No. of 
CPUs

Fastest computing Small memory Well-balanced (time/memory)

1 ICP = 1 ICP=1 ICP = 1 (0%/0%)

2 ICP = 2 ICP=1 ICP = 2 (0%/6.1%)

4 ICP = 2 ICP=1 ICP = 2 (0%/6.1%)

8 ICP = 3 ICP=1 ICP = 3 (0%/24.2%)

16 ICP = 3 ICP=1 ICP = 3 (0%/24.2%)

1 ICP = 1 ICP=1 ICP = 1 (0%/0%)

2 ICP = 2 ICP=1 ICP = 1 (0%/24.2%)

4 ICP = 2 ICP=1 ICP = 2 (0%/24.2%)

8 ICP = 3 ICP=1 ICP = 2 (50.0%/6.1%)

16 ICP = 3 ICP=1 ICP = 2 (50.0%/6.1%)

1 NG NG NG

2 ICP = 2 ICP=2 ICP = 2 (0%/0%)

4 ICP = 3 ICP=1 ICP = 2 (1.8%/6.1%)

8 ICP = 3 ICP=1 ICP = 2 (20.0%/6.1%)

16 ICP = 3 ICP=1 ICP = 2 (22.1%/6.1%)

3

2

1

In well-balanced policy: 
- Computing time: 1.8 - 22.1% longer than fastest computing policy.
- Amount of memory: 6.1% larger than small memory policy 
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Introduction: Why is AT necessary?1

Content

Definition of AT and its two viewpoints2
Existing AT classification3
Proposal of numerical policy interface4
Preliminary results on sparse eigensolver 5
Conclusion6
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66 -1 Summary

The library with the policy selects the ICP by the following methods.
1) The interface has the input of the limit (mandatory) line

and the best line for memory allocation and computing time.
2) The function defines the ICP by the optimization modeled

by the best line within the scope of both limit lines,
based on the repository data.

Matrix library with numerical policy interface, which balances 
between memory allocation and computing time, is proposed.

- The method is applied to selection of working space of a sparse
eigensolver for parallelization on SMP.

- Then, the method can select a well-balanced working space for 
solving matrices obtained from MatrixMarket. 
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66 -2 Future work

(1) Implementations of optimization problem
- More precise prediction model of best and limit lines
- More and more tests and preparation of data repository

(2) Extensions
-Extension of policy using other parameters for Lanczos
- Working space for reorthogonalizations 
- Number of CPUs

-Extension of library 
- Arnoldi
- GMRES
- BiCGStab

-Extension of platforms
- MPPs
- Cluster of SMPs
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